Complexes of the Type *trans*-[PtCl₂(PR₃)(CNR')] and the Carbene Complex *trans*-[PtCl₂(PR₃){ $C(NHC_6H_4Me-4)_2$ }]

JOHN R. BRIGGS, CHRISTOPHER CROCKER and BERNARD L. SHAW* School of Chemistry, The University, Leeds LS2 9JT, U.K. Received February 6, 1981

Treatment of chloro-bridged complexes of type $[Pt_2Cl_4(PR_3)_2]$ with isonitriles at low temperatures gives complexes of type trans- $[PtCl_2(PR_3)/(CNR')]$, which can be isolated. Previously only the corresponding cis-complexes have been described. Addition of two mole equivalents of CNC_6H_4 -Me-4 to $[Pt_2I_4-(PBu_2^4Pr^n)_2]$ in dichloromethane at -78 °C gives the salt cis- $[Ptl(PBu_2^4Pr^n)/(CNC_6H_4Me-4)_2]I$. Treatment of trans- $[PtCl_2(PBu_2^4Pr^n)/(CNC_6H_4Me-4)]$ with p-toluidine gives the carbene complex trans- $[PtCl_2-(PBu_2^4Pr^n)/(CNC_6H_4Me-4)_2]I$, the first example of a trans-carbene complex of this type.

Treatment of chloro-bridged complexes of the type $[Pt_2Cl_4(PR_3)_2]$ with neutral ligands, L, causes fission of the bridges to give mononuclear complexes of type $[PtCl_2(PR_3)L]$ which can sometimes be isolated and can be of *cis*- or of *trans*-configuration [1-3]. With L = amine *trans*-complexes are readily isolated [1-3] but with L = olefin only *cis*-complexes have hitherto been isolated: these have been studied extensively [4-8]. We have shown by NMR spectroscopy that very rapid reversible fission of a chloro-bridged complex of the type $[Pt_2Cl_4(PR_3)_2]$ by an olefin, L, such as an allylic alcohol [8], vinyl acetate [9], allyl acetate [9], ethylene, allene [10], butadiene [11] to give *trans*-[PtCl₂(PR₃)L] occurs in solution

$$[\operatorname{Pt}_{2}\operatorname{Cl}_{4}(\operatorname{PR}_{3})_{2}] + 2L \xleftarrow{\text{fast}} trans-[\operatorname{Pt}\operatorname{Cl}_{2}(\operatorname{PR}_{3})L]$$

slow
$$\iint_{cis} [\operatorname{Pt}\operatorname{Cl}_{2}(\operatorname{PR}_{3})L]$$

and that lowering the temperature invariably increases the ratio trans-[PtCl₂(PR₃)L]/[Pt₂Cl₄-(PR₃)₂]. With carbon monoxide the bridged complexes of type [Pt₂Cl₄(PR₃)₂] react relatively slowly to give *cis*-[PtCl₂(PR₃)(CO)] and we have shown that as with olefins, carbon monoxide at low temperatures reacts to give trans-[PtCl₂(PR₃)-(CO)] [12]. Lewis and co-workers reported in 1972 [5] that a transient species, presumably trans-[PtCl₂(PR₃)(CO)], was formed and more recently Anderson and Cross [13-15] were able to isolate complexes of the type trans-[PtCl₂(PR₃)CO] by working at low temperatures and by keeping down the concentration of carbon monoxide, which catalyses the isomerization of trans-[PtCl2(PR3)-(CO)] to cis-[PtCl₂(PR₃)(CO)]. In view of our previous work on the fission with olefins, CO and other ligands we thought that compounds of the type trans-[PtCl₂(PR₃)R'NC] might be isolable since isonitriles, R'NC, are strongly bonding ligands to platinum. Previously bridged complexes [Pt₂Cl₄(PR₃)₂] have been shown to react with isonitriles to give cis-complexes of type cis-[PtCl₂(PR₃)(R'NC)] [16]. We reasoned that the isomerization trans-[PtCl₂- $(PR_3)R'NC]$ \rightarrow cis-[PtCl₂(PR₃)R'NC] would probably be promoted by free R'NC and therefore that an excess of the dimer $[Pt_2Cl_4(PR_3)_2]$ would reduce the rate of isomerization.

In our first experiment, conducted in an NMR tube, we added 0.8 mole of p-tolyl isocyanide per Ptatom to a solution of $[Pt_2Cl_4(PBu_2^tPr^n)_2]$ in CH_2 - Cl_2/CD_2Cl_2 at -90 °C. This rapidly gave a single, new, species with ³¹P NMR parameters $\delta P = 27.1$ ppm, ${}^{1}J(PtP) = 2898$ Hz, together with the bridged compound. A coupling constant of this magnitude is consistent with phosphine trans to isocyanide. This species was stable to ca. +8 °C but, above this temperature in the CH_2Cl_2/CD_2Cl_2 solution, another species with $\delta P = 45.5$ ppm, ¹J(PtP) = 3266 Hz formed. This was shown to be cis-[PtCl₂(PBu^t₂- Pr^{n} (CNC₆H₄Me-4)] which was synthesized in 77% yield by the general method of Chatt et al. [16] for compounds of this type. Microanalytical, melting point, IR and ³¹P NMR data are given in the Tables I and II and preparative details in the Experimental. The ³¹P NMR spectrum of this *cis*-compound at ca. 25 °C showed a central broad resonances with broad satellites. When the solution was cooled these resonances separated into two and, at or below

^{*}Author to whom correspondence should be addressed.

	С	Н	N	Melting Point θ/°C	v(Pt–Cl)	ν(C≡N)
cis -{PtCl ₂ (PBu ^t ₂ Pr ⁿ)(CNC ₆ H ₄ Me-4)]	39.95(39.8)	5.65(5.65)	2.5(2.45)	260–270 ^a	290, 334	2195
trans-[PtCl ₂ (PBu ^t ₂ Pr ⁿ)(CNMe)] ^b	31.1(31.5)	5.75(5.7)	2.3(2.85)	164-172	340	2240
trans-[PtCl ₂ (PBu ^t ₂ Pr ⁿ)(CNC ₆ H ₄ Me-4)]	39.3(39.8)	5.75(5.65)	2.75(2.45)	120-122	342	2195
trans-[PtCl ₂ (PEt ₃)(CNBu ^t)]	28.4(28.25)	5.2(5.2)	2.95(3.0)	90-93	335	2210
trans-[PtCl ₂ (PMe ₃)(CNBu ^t)]	22.25(22.6)	4.1(4.25)	2.9(3.3)	145 [°]	338	2230
trans-[PtCl ₂ (PE1 ₃)(CNC ₆ H ₄ Me-4)]	33.45(33.55)	4.45(4.4)	2.95(2.8)	78-82	350	2200
cis-[PtI(PBu ^t ₂ Pr ⁿ)(CNC ₆ H ₄ Me-4) ₂]1	37.7(37.2)	4.7(4.8)	2.85(3.2)	100 ^a		2190, 2170
$\textit{trans-}[PtCl_2(PBu_2^tPr^n)\{C(NHC_6H_4Me-4)_2\}]$	46.15(46.0)	6.1(6.1)	4.1(4.15)	213-216	325	

TABLE I. Analytical (% Calculated Values in Parentheses) and IR (cm^{-1}) Data.

^aWith decomposition. ^bMolecular weight 490(495). ^cDecomposes without melting.

TABLE II. ³¹P- and ¹H-NMR Parameters.

	³¹ P		¹ H ^b		
	$\delta \mathbf{P}^{\mathbf{a}}$	¹ J(PtP) (Hz)	$\delta \mathbf{P} \boldsymbol{B} \boldsymbol{u}^{\mathbf{t}}$	δCNR	δArMe
trans-[PtCl ₂ (PMe ₃)(CNBu ^t)]	-22.8	2810		1.54 t ^c	
trans-[PtCl ₂ (PEt ₃)(CNBu ^t)]	4.9	2819		1.55t ^c	
trans-[PtCl ₂ (PEt ₃)(CNC ₆ H ₄ Me-4)]	6.0	2808			
trans- $[PtCl_2(PBu_2^tPr^n)(CNC_6H_4Me-4)]^d$	27.1 ^e	2898	1.51		2.39
trans-[PtI ₂ (PBu $_2^t$ Pr ⁿ)(CNC ₆ H ₄ Mc-4)]	49.3 ^e	3098			
trans- $[PtCl_2(PBu_2^t Pr^n)(CNMe)]$	26.0	2922	1.47		
cis -{PtCl(PBu ₂ ^t Pr ⁿ)(CNC ₆ H ₄ Me-4) ₂]Cl ^d	51.9	2803	1.56)		2.39
			1.49 ^f		
<i>cis</i> -[PtI(PBu ^t ₂ Pr ⁿ)(CNC ₆ H ₄ Me-4) ₂]I	52.1	2727			
cis-{PtCl(PEt ₃)(CNBu ^t) ₂]Cl	17.9	2695			
cis·[PtCl ₂ (PBu ^t ₂ Pr ⁿ)(CNC ₆ H ₄ Me-4)]	45.5	3266	1.48		
trans-[PtCl ₂ (PBu ^t ₂ Pr ⁿ){C(NHC ₆ H ₄ Mc-4) ₂ }]	26.6	2366	1.36		2.38)
					2.30 ^{fg}

^a In ppm to high frequency of H₃PO₄ and measured in CDCl₃ except where stated otherwise. ^bIn CDCl₃. ^{c 3}J(¹⁴NH) = 2.2 Hz. ^dAt 0 °C. ^eIn CH₂Cl₂/CD₂Cl₂. ^fAt -20 °C. ^gAt 20 °C, coalesced at 40 °C.

-30 °C, the resonances were sharp. The two species correspond to the two rotamers (1) and (2) corresponding to restricted rotation round the phosphorus-platinum bond because of strong interaction between the bulky t-butyl groups and the chloride or *p*-tolylisocyanide ligands. Di-tertiarybutyl-phosphine complexes frequently show rotamers due to such an interaction [17]. The ³¹P NMR parameters for the two species are: major species $\delta P = 46.6$, ¹J(PtP) = 3215 Hz, minor species $\delta P = 36.0$, ¹J(PtP) = 3259 Hz. The *trans*-complex, *trans*-[PtCl₂(PBu¹₂-Prⁿ)(CNC₆H₄Me-4)] was prepared by adding a deficiency (*ca.* 80%) of the p-tolyl isocyanide to a solution of [Pt₂Cl₄(PBu¹₂Prⁿ)₂] at *ca.* -78 °C, evaporation of the solvent at this temperature under

. 6₆H₄ Me

(3)

reduced pressure and recrystallization of the residue from light petroleum. We initially used [Pt₂Cl₄- $(PBu_2^t Pr^n)_2$ as the bridged complex since we thought that the bulky phosphine, PBu^t₂Prⁿ, might help to stabilize the trans-product viz. [PtCl₂(PBu^t₂Prⁿ)-(CNR)]. We then found, however, that the complexes trans-[PtCl₂(PMe₃)(CNBu^t)] and trans-[PtCl₂- $(PEt_3)(CNR')$] $(R' = Bu^t, p-CH_3C_6H_4)$ could also be prepared and isolated by the same procedure. These trans-complexes are all pale yellow and highly soluble in common organic solvents. They all show a single very strong peak in the far IR spectrum due to $\nu(Pt -$ Cl), at 340 cm⁻¹, characteristic of a trans-Cl-Pt-Cl moiety. The values of ¹J(PtP) for these trans-complexes are all ca. 300 Hz less than for their cisisomers. In contrast, Anderson and Cross have shown that the value of ${}^{1}J(PtP)$ for trans-[PtCl₂(PR₃)CO] is generally greater than for the cis-isomer. This difference possibly reflects the stronger σ -donor and weaker π -acceptor character of isocyanides as ligands compared with carbon monoxide.

The ³¹P NMR spectra of the complexes trans-[PtCl₂(PR₃)(CNBu^t)] (R = Me, Et) where both the phosphine and the isocyanide are symmetrical about the P-Pt-C axis in the complex, also show coupling to ¹⁴N, ³J(³¹P-¹⁴N) ~ 10 Hz, so that their ³¹P NMR spectra form a central 1:1:1 triplet flanked by satellites (due to 195-platinum). Coupling to ¹⁴N is not observed with the corresponding *cis*-isomers and its presence with the *trans*-complexes reflects the higher symmetry around the P-Pt-C vector resulting in a small electric field gradient. Coupling to ¹⁴N is also observed with free Bu^tNC [18].

As mentioned above, we found that a deuteriosolution of trans-[PtCl₂(PBu^t₂ Prⁿ)chloroform (CNC_6H_4Me-4)] at 0 °C is stable but on adding one mole of 4-tolyl isocyanide, a new species, $\delta P = 51.9$ ppm, ${}^{1}J(PtP) = 2803$ Hz formed. On attempted isolation, however, such as by evaporation of the solvent under reduced pressure at or below 0 °C and addition of light petroleum, decomposition into a mixture, consisting mainly of cis-[PtCl2- $(PBu_2^t Pr^n)(CNC_6H_4Me-4)]$ and free isocyanide. occurred. We hoped that replacement of chloride by iodide might facilitate the isolation of an intermediate analogous to the above, which was probably either a five-coordinate complex, or a salt. Addition of 2.1 mole equivalents of p-tolyl isocyanide to $[Pt_2I_4(PBu_2^tPr^n)_2]$ in CH₂Cl₂ at -78 °C followed by the addition of light petroleum gives a crystalline complex which from microanalytical and conductivity data (Table I) and IR and ³¹P NMR data (Table II) we formulate as the salt cis-[PtI(PBu^t₂ Prⁿ)(CNC₆- $H_4Me-4)_2$]I.

It was shown by Badley, Chatt and Richards [16] that isonitrile complexes of the type cis-[PtCl₂(PR₃)-(CNR')] are attacked by alcohols or amines (nucleophilic attack) to give carbene complexes, *e.g.* a pri-

mary amine R''NH₂ gives a complex of type *cis*-[PtCl₂(PR₃){C(NHR')(NHR'')}]. We have now treated a dichloromethane solution of *trans*-[PtCl₂-(PBu^t₂Prⁿ){CNC₆H₄Me-4}] with *p*-toluidine at *ca*. 20 °C. After two hours the carbene complex *trans*-[PtCl₂(PBu^t₂Prⁿ){C(NHC₆H₄Me-4)₂}] was isolated in very good (84%) yield. Microanalytical, infrared and NMR data for this compound are in the Tables. This compound showed a single infrared absorption band at 325 vs cm⁻¹ due to ν (Pt--Cl) and the low value of ¹J(Pt-P) of 2366 Hz (Table II) is consistent with the carbene ligand being *trans* to the phosphorus. Carbene complexes of type

trans-[PtCl₂(PR₃)(
$$\binom{N}{N}$$
])] have been prepared by fis-
R

sion of electron rich olefins [19, 20] but ours is the first synthesis from a complex of type *trans*-[PtCl₂- $(PR_3)(CNR')$].

Carbene complexes of platinum(II) containing an amino group attached to the carbene carbon are known to exhibit restricted rotation or geometrical isomerism about the C...N bond [21, 22]. Our complex *trans*-[PtCl₂(PBu¹₂Prⁿ){C(NHC₆H₄Me-4)₂}] shows a temperature dependent ¹H NMR spectrum but only one ³¹P resonance, with satellites. Below 40 °C the 4-tolyl methyls are inequivalent, the two signals merging above this temperature. Since only one ³¹P signal is observed we suggest as a tentative explanation for this behaviour that the platinumcarbene bonding is as shown in (3) and that above 40 °C rotation around the C–N bonds becomes rapid on the NMR time scale.

It was recognised by Badley et al. that the conversion of complexes of type cis-[PtCl₂(PR₃)(CNR')] to carbenes is probably going via protonation of the nitrogen as a first step. The observation of ${}^{3}J({}^{31}P$ -¹⁴N) coupling in some of the trans-complexes gave us the opportunity to study the possible protonation of nitrogen. Addition of one mole of CF₃COOH to a CDCl₃ solution of *trans*-[PtCl₂(PEt₃)(CNBu^t)] at -60 °C removed the coupling to nitrogen giving a broad singlet in the ³¹P NMR spectrum. When warmed to -30 °C, however, this coupling reappears. We interpret these results as indicative of reversible protonation at nitrogen at -60 °C at a rate which is at about as rapid as the NMR time scale but becomes more rapid at -30 °C. The proportion of protonated species probably decreases as temperature increases.

Experimental

³¹P NMR spectra were recorded on a JEOL FX100 NMR spectrometer with broad band proton decoupling. ¹H NMR spectra were recorded at 100 MHz. Complexes of type *trans*-[PtCl₂(L)(CNR)] were all prepared and purified similarly, the preparation of *trans*-[PtCl₂(PBu^t₂Prⁿ)(CNC₆H₄Me-4)] is typical.

4-Tolyl isocyanide (0.017 g, 0.15 mmol) was added to a solution of $[Pt_2Cl_4(PBu_2^tPr^n)_2]$ (0.083 g, 0.091 mmol) in dichloromethane (50 cm³) at -78 °C. The solvent was removed under vacuum below -10 °C and the residue dissolved in light petroleum (b.p. 40-60 °C) to give the required product as yellow microcrystals (75 mg, 87%). The yields of the other four complexes of this type shown in Table I were prepared in yields of 53-71%.

$\operatorname{cis}_{PtI(PBu_2^t Pr^n)(CNC_6H_4Me-4)_2]I$

4-Tolyl isocyanide (12 mg, 0.103 mmol) was added to a suspension of $[Pt_2I_4(PBu_2^tPr^n)_2]$ (32 mg, 0.025 mmol) in dichloromethane (ca. 2 cm³) at -78 °C. Light petroleum (b.p. 30-40 °C) was then added until the mixture just became cloudy. The mixture was then set aside at -30 °C to give the product as pale yellow needles (15 mg, 34%).

trans- $[PtCl_2(PBu_2^tPr^n) \{C(NHC_6H_4Me-4)_2\}]$

trans-[PtCl₂(PBu¹₂Prⁿ)(CNC₆H₄Me-4)] (86 mg, 0.15 mmol) and 4-toluidine (65 mg, 0.61 mmol) were dissolved in dichloromethane (2 cm³) and the resultant solution set aside at room temperature for 2 hours. Evaporation of the solvent under reduced pressure gave an oil which solidifed on addition of light petroleum (b.p. 30–40 °C). The required product formed yellow microcrystals from benzene/ light petroleum (b.p. 30–40 °C). Yield 86 mg, 84%.

Acknowledgements

We thank the Science Research Council for support and Johnson Matthey Ltd. for the generous loan of platinum salts.

References

- 1 J. Chatt and L. M. Venanzi, J. Chem. Soc., 3858 (1955).
- 2 J. Chatt and L. M. Venanzi, J. Chem. Soc., 2445 (1957).
- 3 'Transition Metal Complexes of Phosphorus, Arsenic and Antimony Ligands', Ed. C. A. McAuliffe, Macmillan Press Ltd., 1973.
- 4 J. Chatt, N. P. Johnson and B. L. Shaw, J. Chem. Soc., 3269 (1964).
- 5 J. Ashley-Smith, I. Donek, B. F. G. Johnson and J. Lewis, J. Chem. Soc. Dalton, 1776 (1972).
- 6 C. E. Holloway, C. Halley, B. F. G. Johnson and J. Lewis, J. Chem. Soc. (A), 53 (1969).
- 7 J. Ashley-Smith, I. Donek, B. F. G. Johnson and J. Lewis, J. Chem. Soc. Dalton, 128 (1974).
- 8 J. R. Briggs, C. Crocker, W. S. McDonald and B. L. Shaw, J. Chem. Soc. Dalton, 64 (1980).
- 9 J. R. Briggs, C. Crocker, W. S. McDonald and B. L. Shaw, J. Organomet. Chem., 181, 213 (1979).
- 10 J. R. Briggs, C. Crocker, W. S. McDonald and B. L. Shaw, J. Chem. Soc. Dalton, 121 (1981).
- 11 J. R. Briggs, C. Crocker, W. S. McDonald and B. L. Shaw, unpublished.
- 12 J. R. Briggs, C. Crocker and B. L. Shaw, *Inorg. Chim.* Acta, 40, 245 (1980).
- 13 G. K. Anderson and R. J. Cross, Inorg. Chim. Acta, 44, L21 (1980).
- 14 G. K. Anderson and R. J. Cross, J. Chem. Soc. Dalton, 1988 (1980).
- 15 G. K. Anderson and R. J. Cross, Chem. Soc. Reviews, 9, 185 (1980).
- 16 E. M. Badley, J. Chatt and R. L. Richards, J. Chem. Soc. (A), 21 (1971).
- 17 B. E. Mann, C. Masters, B. L. Shaw and R. E. Stainbank, *Chem. Comm.*, 1103 (1971).
- 18 I. D. Kuntz, P. von R. Schleyer and A. Allerhand, J. Chem. Phys., 35, 1533 (1961).
- 19 D. J. Cardin, B. Cetinkaya and M. F. Lappert, J. Chem. Soc. Chem. Comm., 400 (1971).
- 20 D. J. Cardin, B. Cetinkaya, E. Cetinkaya and M. F. Lappert, J. Chem. Soc. Dalton, 514 (1973).
- 21 F. Bonati, G. Minghetti and G. LaMonica, *Gazz. Chim. Ital.*, 102, 731 (1972).
- 22 E. M. Badley, B. J. L. King and R. L. Richards, J. Organometal. Chem., 27, C37 (1971).