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Treatment of chloro-bridged complexes of type 
[Pt2C14(PR3),] with isonitriles at low temperatures 
gives complexes of type trans-[PtC12(PR3)(CNR ‘,/, 
which can be isolated. Previously only the corres- 
ponding cis-complexes have been described. Addition 
of twr, mole equivalents of CNC6H4-Me-4 to [Pt,I,- 
(PBuiPr”)J in dichloromethane at ~ 78 “C gives the 
salt cis-[Ptl(PBu~Pr”)(CNC6 H$le-4)2] I. Treatment 
of tram-[PtClZ(PBu@“)(CNC6H&e-4)j with p- 
toluidine 
(PBu:Pr” 

ives the carbene complex trans-[PtCla- 

B (C(NHC, H,Me-4),)], the first example of 
a trans-carbene complex of this type. 

Treatment of chloro-bridged complexes of the 
type [Pt,Cl,(PR,),] with neutral ligands, L, causes 
fission of the bridges to give mononuclear complexes 
of type [PtCl,(PRa)L] which can sometimes be 
isolated and can be of cis- or of trans-configuration 
[l-3]. With L = amine trans-complexes are readily 
isolated [l-3] but with L = olefin only cis-com- 
plexes have hitherto been isolated: these have been 
studied extensively [4-81. We have shown by NMR 
spectroscopy that very rapid reversible fission of a 
chloro-bridged complex of the type [Pt,Cl,(PRa)a] 
by an olefin, L, such as an allylic alcohol [8], vinyl 
acetate [9], ally1 acetate [9], ethylene, allene [lo], 
butadiene [ 1 l] to give trans-[PtCla(PRs)L] occurs 
in solution 

fast 
[Pt, Cl4 (PR,),] + 2L V trans-[PtCla(PRa)L] 

slow 
lr 

cis-[PtCla(PRa)L] 

and that lowering the temperature invariably 
increases the ratio trans-[PtCla(PR,)L]/[Pt,C&- 
(PR,),] . With carbon monoxide the bridged 
complexes of type [Pt,Cl,(PR,),] react relatively 
slowly to give cis-[PtCla(PRa)(CO)] and we have 
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shown that as with olefins, carbon monoxide at 
low temperatures reacts to give trans-[PtCla(PRa)- 
(CO)] [ 121. Lewis and co-workers reported in 1972 
[S] that a transient species, presumably trans- 
[PtCl,(PRs)(CO)], was formed and more recently 
Anderson and Cross [ 13-1.51 were able to isolate 
complexes of the type trans-[PtCl,(PRa)CO] by 
working at low temperatures and by keeping down 
the concentration of carbon monoxide, which 
catalyses the isomerization of trans-[PtCla(PRa)- 
(CO)] to cis-[PtCla(PRs)(CO)] . In view of our prev- 
ious work on the fission with oleflns, CO and other 
ligands we thought that compounds of the type 
trans-[PtClz(PR,)R’NC] might be isolable since iso- 
nitriles, R’NC, are strongly bonding ligands to plati- 
num. Previously bridged complexes [Pt,C14(PRa),] 
have been shown to react with isonitriles to give 
cis-complexes of type cis-[PtC12 (PR,)(R’NC)] [ 161. 
We reasoned that the isomerization trans-[PtC12- 
(PR,)R’NC] + cis-[PtC12(PRa)R’NC] would 
probably be promoted by free R’NC and therefore 
that an excess of the dimer [PtzC14(PRa)2] would 
reduce the rate of isomerization. 

In our first experiment, conducted in an NMR 
tube, we added 0.8 mole of p-tolyl isocyanide per Pt- 
atom to a solution of [PtaCl,(PBu~Pr”),] in CHa- 
Cla /CDaCla at -90 “C. This rapidly gave a single, 
new, species with 31P NMR parameters 6P = 27.1 

ppm, ‘J(PtP) = 2898 Hz, together with the bridged 
compound. A coupling constant of this magnitude 
is consistent with phosphine trans to isocyanide. 
This species was stable to ca. +8 “C but, above 
this temperature in the CHaCla/CDaCla solution, 
another species with 6P = 45.5 ppm, ‘J(PtP) = 3266 
Hz formed. This was shown to be cis-[PtCla(PBu:- 
Pr”)(CNC,H4Me-4)] which was synthesized in 77% 
yield by the general method of Chatt et al. [16] for 
compounds of this type. Microanalytical, melting 
point, IR and 31P NMR data are given in the Tables 
I and II and preparative details in the Experimental. 
The 31P NMR spectrum of this cis-compound at 
ca. 25 “C showed a central broad resonances with 
broad satellites. When the solution was cooled these 
resonances separated into two and, at or below 
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TABLE 1. Analytical (% Calculated Values in Parentheses) and IR (cm-t) Data. 

J. R. Briggs, C. Cracker and B. 1‘. Shaw 

c H N Melting Point v(Pt-Cl) v(C=N) 

91°C 

cis-[PtClz(PBu;Prn)(CNC6H4Me-4)] 39.95(39.8) 5.65(5.65) 2.5(2.45) 260-270’ 290,334 2195 

trans.[PtClz(PBu~Pr”)(CNMe)] b 31.1(31.5) 5.75(5.7) 2.3(2.85) 164-172 340 2240 

Irans-[PtClz(PButzPrn)(CNC6H4Me-4)] 39.3(39.8) 5.75(5.65) 2.75(2.45) 120-122 342 2195 

Irans-[PtClz(PEt3)(CNBut)] 28.4(28.25) 5.2(5.2) 2.95(3.0) 90-93 335 2210 

trans-[PtClz(PMe3)(CNBut)] 22.25(22.6) 4.1(4.25) 2.9(3.3) 145c 338 2230 

trans-[PtClz(PEt3)(CNCbHaMe4)] 33.45(33.55) 4.45(4.4) 2.95(2.8) 78-82 350 2200 

cis-[Ptl(PButzPr”)(CNC6HqMe-4)2]1 37.7(37.2) 4.7(4.8) 2.85(3.2) 1 ooa 2190, 21 

trans-[PtClz(PBu~Pr”)o(NHC~H~Me-4)2)1 46.15(46.0) 6.1(6.1) 4.1(4.15) 213-216 325 

70 

‘With decomposition. bMolecular weight 490(495). ‘Decomposes without melting. 

TABLE If. 3’P- and ‘H-NMR Parameters. 

31P 

&Pa 

lHb 
_ 

‘J(PtP) (Hz) sPBut GCNR GArMe 

trans-[PtClz(PMe3)(CNBut)] 

trans-[PtC12(PEt3)(CNBut)] 

Irans-[PtClz(PEt3)(CNChH4Me4)] 

frans-[PtC12(PB$Prn)(CNC6H4Me-4)]d 

tram- [ PtIz (PBu\ Prn)(CNC6 H4 Mc4)] 

trans.[PlCI2(PBu;Pr”)(CNMe)] 

cis-[PtCl(PBu4Prn)(CNC6114Me4)2 ]Cld 

-22.8 2810 1.54tC 

4.9 2819 1.55tC 

6.0 2808 

27.1e 2898 1.51 2.39 

49.3e 3098 

26.0 2922 1.47 

51.9 2803 2.39 

cis-[PtI(PBuiPrn)(CNC6H4Me4)2]1 52.1 2727 

cis-[PtCI(PEt3)(CNBut)2]C1 17.9 2695 

cis-[PtC12(PBuiPrn)(CNC6H4Me4)] 45.5 3266 1.48 

frans-[PtCl~(PBu~Prn){C(Nl~C~H4Me-4)2}~ 26.6 2366 1.36 2.38 

2.30 1 g 

-~ 

% ppm to high frequency of H31’04 and measured in CDCI, except where stated otherwise. bIn CDC13. ’ 3J(‘4NH) = 2.2 
HZ. dam 0 “C. ?n CH2C12/CD2C12. fAt -20 “C. ‘At 20 “C, coalesced at 40 “C. 

-30 “C, the resonances were sharp. The two species 
correspond to the two rotamers (1) and (2) corres- 
ponding to restricted rotation round the phos- 
phorus-platinum bond because of strong interaction 
between the bulky t-butyl groups and the chloride 
or p-tolylisocyanide hgands. Di-tertiarybutyl-phos- 
phine complexes frequently show rotamers due to 
such an interaction [ 171. The 31P NMR parameters 
for the two species are: major species SP = 46.6, 
‘J(PtP) = 3215 Hz, minor species 6P = 36.0, rJ(PtP) = 
3259 Hz. The trans-complex, trans-[PtC12(PBui- 
Pr”)(CNC,H,Me-4)] was prepared by adding a 
deficiency (ca. 80%) of the p-tolyl isocyanide to a 
solution of [Pt,C14(PBuiPrn)2] at cu. -78 “C, 
evaporation of the solvent at this temperature under 

Cl 
\ /’ 

B”‘\ /Pt\cNc H Me 
MP\ 6 6 

Bu’ Pr” 

(2) 

L&Me 

Y” 
C,Hd Me 

(3) 
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reduced pressure and recrystallization of the residue 
from light petroleum. We initially used [Pt,Cl,- 
(PBui Pr”),] as the bridged complex since we thought 
that the bulky phosphine, PBuiPr”, might help to 
stabilize the truns-product viz. [Pt&(PBut,PP)- 
(CNR)]. We then found, however, that the com- 
plexes fruns-[PtC12(PMe3)(CNBut)] and trans-[PtCl?- 
(PEta)(CNR’)] (R’ = But, p-CHJ C,I&) could also be 
prepared and isolated by the same procedure. These 
truns-complexes are all pale yellow and highly soluble 
in common organic solvents. They all show a single 
very strong peak in the far IR spectrum due to v(Pt- 
Cl), at 340 cm-‘, characteristic of a trans-Cl-Pt-Cl 
moiety. The values of ‘J(PtP) for these trans-com- 
plexes are all ca. 300 Hz less than for their cis- 
isomers. In contrast, Anderson and Cross have shown 
that the value of ‘J(PtP) for trans-[PtC12(PR,)CO] 
is generally greater than for the &-isomer. This dif- 
ference possibly reflects the stronger u-donor and 
weaker n-acceptor character of isocyanides as ligands 
compared with carbon monoxide. 

The 31P NMR spectra of the complexes rruns- 
[PtClz(PR3)(CNBut)] (R = Me, Et) where both the 
phosphine and the isocyanide are symmetrical about 
the P-Pt-C axis in the complex, also show coupl- 
ing to 14N, 3 J(31&‘4N) _ 10 Hz, so that their 31P 
NMR spectra form a central 1: 1: 1 triplet flanked by 
satellites (due to 195platinum). Coupling to 14N 
is not observed with the corresponding c&isomers 
and its presence with the truns-complexes reflects 
the higher symmetry around the P-Pt-C vector 
resulting in a small electric field gradient. Coupling 
to “N is also observed with free ButNC [ 181. 

As mentioned above, we found that a deuterio- 
chloroform solution of truns-[PtC12(PBui Pr”)- 
(CNC6H4Me-4)] at 0 “C is stable but on adding one 
mole of 4-tolyl isocyanide, a new species, 6P = 51.9 

ppm, ‘J(PtP) = 2803 Hz formed. On attempted 
isolation, however, such as by evaporation of the 
solvent under reduced pressure at or below 0 “C 
and addition of light petroleum, decomposition 
into a mixture, consisting mainly of cis-[PtCl,- 
(PBuiPr”)(CNC,H,Me-4)] and free isocyanide, 
occurred. We hoped that replacement of chloride 
by iodide might facilitate the isolation of an inter- 
mediate analogous to the above, which was probably 
either a five-coordinate complex, or a salt. Addition 
of 2.1 mole equivalents of p-tolyl isocyanide to 
[Pt214(PBu;Prn)z] in CHzClz at -78 “C followed by 
the addition of light petroleum gives a crystalline 
complex which from microanalytical and conducti- 
vity data (Table I) and IR and “P NMR data (Table 
II) we formulate as the salt cis-[PtI(PBu;Pr”)(CNC,- 
H,Me-4),] I. 

It was shown by Badley, Chatt and Richards [ 161 
that isonitrile complexes of the type cis-[PtClz(PR3)- 
(CNR’)] are attacked by alcohols or amines (nucleo- 
philic attack) to give carbene complexes, e.g. a pri- 
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mary amine R’NH, gives a complex of type cis- 
[PtClZ(PR3XC(NHR’)(NHR”)}] . We have now 
treated a dichloromethane solution of rrurzs-[PtC12- 
(PBu\Pr”){CN&,H,Me-4)] with p-toluidine at cu. 
20 “C. After two hours the carbene complex truns- 
[PtC12(PBu\Prn){C(NHC6H4Me4)2)1 was isolated in 
very good (84%) yield. Microanalytical, infrared and 
NMR data for this compound are in the Tables. This 
compound showed a single infrared absorption band 
at 325 vs cm-’ due to @‘t-Cl) and the low value of 
‘J(Pt-P) of 2366 Hz (Table II) is consistent with the 
carbene ligand being truns to the phosphorus. 
Carbene complexes of type 

R 

IN 
rruns-[PtClZ(PR3)(C, )] have been prepared by fis- 

N I 

R 
sion of electron rich olefins [19, 201 but ours is the 
first synthesis from a complex of type rruns-[PtClz- 

(PR3 WNR’)I . 
Carbene complexes of platinum(H) containing an 

amino group attached to the carbene carbon are 
known to exhibit restricted rotation or geometrical 
isomerism about the C;T;N bond [21, 221. Our 
complex rrans-[PtC12(PBu;Prn)(C(NHC,H4Me-4),}] 
shows a temperature dependent ‘H NMR spectrum 
but only one 3’P resonance, with satellites. Below 
40°C the 4-tolyl methyls are inequivalent, the two 
signals merging above this temperature. Since only 
one 31P signal is observed we suggest as a tentative 
explanation for this behaviour that the platinum- 
carbene bonding is as shown in (3) and that above 
40 “C rotation around the C-N bonds becomes rapid 
on the NMR time scale. 

It was recognised by Badley et al. that the conver- 
sion of complexes of type cis-[PtCl,(PR3)(CNR’)] 
to carbenes is probably going via protonation of the 
nitrogen as a first step. The observation of 3J(31P- 
14N) coupling in some of the rrurzs-complexes gave 
us the opportunity to study the possible protonation 
of nitrogen. Addition of one mole of CF,COOH 
to a CDC13 solution of rruns-[PtC12(PEt3)(CNBut)] 
at -60 “C removed the coupling to nitrogen giving a 
broad singlet in the 31P NMR spectrum. When warm- 
ed to -3O”C, however, this coupling reappears. We 
interpret these results as indicative of reversible 
protonation at nitrogen at -60°C at a rate which is 
at about as rapid as the NMR time scale but becomes 
more rapid at -30 “C. The proportion of protonated 
species probably decreases as temperature increases. 

Experimental 

31P NMR spectra were recorded on a JEOL FXlOO 
NMR spectrometer with broad band proton decoupl- 
ing. ‘H NMR spectra were recorded at 100 MHz. 
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Complexes of type trrzns-[PtCl,(L)(CNR)] were all 
prepared and purified similarly, the preparation of 
trans-[PtC12(PBu~Pr”)(CNC6HqMe-4)] is typical. 

4-Tolyl isocyanide (0.017 g, 0.15 mmol) was 
added to a solution of [Pt,Cld(PBuiPr”)Z] (0.083 
g, 0.091 mmol) in dichloromethane (50 cm”) at 
-78 “C. The solvent was removed under vacuum 
below -10 “C and the residue dissolved in light petro- 
leum (b.p. 40-60 “C) to give the required product 
as yellow microcrystals (75 mg, 87%). The yields of 
the other four complexes of this type shown in Table 
I were prepared in yields of 53-71%. 

cis-[PtI(PBu:Pr”)(CNC6H&e-4)JI 
4-Tolyl isocyanide (12 mg, 0.103 mmol) was 

added to a suspension of [Pt,I,(PBuiPr”),] (32 mg, 
0.025 mmol) in dichloromethane (CU. 2 cm”) at 
-78 “C. Light petroleum (b.p. 30-4O’C) was then 
added until the mixture just became cloudy. The 
mixture was then set aside at -30 “C to give the 
product as pale yellow needles (15 mg, 34%). 

trans-[PtC12(PBu:Pr”)(C(NHC6H~Me-4),)/ 
trans-[PtC12(PButPrn)(CNC,HQMe-4)] (86 mg, 

0.15 mmol) and 4-toluidine (65 mg, 0.61 mmol) 
were dissolved in dichloromethane (2 cm3) and the 
resultant solution set aside at room temperature for 
2 hours. Evaporation of the solvent under reduced 
pressure gave an oil which solidifed on addition of 
light petroleum (b.p. 30-40 “C). The required 
product formed yellow microcrystals from benzene/ 
light petroleum (b.p. 30-40 “C). Yield 86 mg, 84%. 
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